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Irregular mappings that are weak solutions of the energy–momentum equations are
presented. One example is discontinuous at a countable number of points while the
other is C1, but not C2. These mappings are not solutions of the usual
Euler–Lagrange equations.

1. Introduction

Let Ω ⊂ R
n be a bounded domain and consider the integral functional

E(u) =
∫

Ω

W (∇u(x)) dx (1.1)

defined on maps u ∈ W 1,1(Ω; Rn). We suppose that W is non-negative and C2. We
also assume that W is frame indifferent and isotropic so that

W (F ) = W (QF ) = W (FQ) (1.2)

for all Q ∈ SO(n) and all F ∈ Mn×n with non-negative determinant, where Mn×n

denotes the real n × n matrices and SO(n) denotes the n × n special orthogonal
matrices. The above notation and terminology arises in the setting of nonlinear
hyperelasticity, where E(u) represents the total energy stored by an elastic body
(occupying the region Ω in its reference configuration) when subject to a deforma-
tion u.

For simplicity of exposition we consider the displacement boundary-value problem
in which the maps u satisfy the boundary condition

u(x) = x for all x ∈ ∂Ω. (1.3)
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1.1. Necessary conditions for a minimizer

The usual Euler–Lagrange equations satisfied by a minimizer u of E are given
by

div
[
dW

dF
(∇u(x))

]
= 0, (1.4)

or, in component form, by

∂

∂xα

[
∂W

∂F i
α

(∇u(x))
]

= 0, i = 1, 2, . . . , n.

These equations are formally obtained by taking variations of the form

uε = u + εv, ε ∈ R, v ∈ C1
0 (Ω; Rn) (1.5)

and setting
d
dε

E(uε)
∣∣∣∣
ε=0

= 0. (1.6)

Other necessary conditions are obtained by taking inner variations, i.e. variations
of the form

uε(x) = u(x + εv(x)), v ∈ C1
0 (Ω; Rn), ε ∈ R. (1.7)

It was demonstrated by Ball [3] that, using variations of the form (1.7), the necessary
condition (1.6) gives rise to equilibrium equations of the form

div M(∇u) = 0, (1.8)

where

M(∇u) := W (∇u)I − (∇u)T
dW

dF
(∇u), (1.9)

or, in components, by

∂

∂xα

[
W (∇u(x))δβ

α − ∂uk

∂xβ

∂W

∂F k
α

(∇u(x))
]

= 0, β = 1, 2, . . . , n.

The above equations are sometimes referred to as energy–momentum equations
and are a generalization of the Dubois–Reymond necessary condition in the one-
dimensional calculus of variations. We highlight the differences between weak solu-
tions of the two systems of equations (1.4) and (1.8). These differences arise, in
part, from the following observation: if u is C2, then expanding (1.8) using (1.9)
yields

div M(∇u) = −(∇u)T div
(

dW

dF
(∇u)

)
= 0. (1.10)

So, smooth solutions of (1.4) give rise to solutions of (1.8). Conversely, if det∇u �= 0,
then ∇u is invertible and thus solutions of (1.8) give rise to solutions of (1.4).
However, if ∇u is not invertible (and hence has eigenvalue 0) at some point, then
there is the possibility that (1.10) may be satisfied at that point even if

div
(

dW

dF
(∇u)

)
�= 0,
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provided that this vector lies in the corresponding eigenspace.
We note that, for the examples given in this paper, W does not satisfy the growth

condition
W (F ) → ∞ as det F → 0+, (1.11)

which is typically imposed on stored-energy functions in nonlinear elasticity. This
condition is used to show that any deformation u with finite energy automatically
satisfies the local invertibility condition

det ∇u > 0 almost everywhere.

However, whether or not W satisfies (1.11), one cannot in general show that a
minimizer of the elastic energy E satisfies the usual Euler–Lagrange equations (1.4).
The difficulty (cf. [3,4]) is that variations of the form (1.5) may have det∇uε < 0 on
a set of positive measure. In our case, the energy of such a variation is undefined,
while under the usual growth condition (1.11) the energy of such a variation is
infinite.

We first demonstrate that if W satisfies (1.2) and Ω = B the unit ball in R
n,

then, under suitable growth conditions,

ũ(x) :=
x

|x| (1.12)

is always a weak solution of (1.8) in the sense that

0 =
∫

B

∇w : M(∇ũ) dx for all w ∈ C1
0 (B; Rn). (1.13)

However, (1.12) is not, in general, a solution of (1.4) (see remark 2.9). (Note also
that the homogeneous map uh(x) ≡ x is always a smooth solution of (1.4) and
(1.8) and satisfies the same boundary condition as ũ.)

We then apply the scaling construction given in [28] and use ũ to construct
infinitely many weak solutions of the energy–momentum equations, each having
a countably infinite number of discontinuities and satisfying the same boundary
condition as ũ. We also note that our approach applies to strictly convex integrands
W , e.g. W (F ) = |F |2 [29].

It is known [1, 17] that if W is strongly elliptic and u is a piecewise C1 weak
solution of (1.4) for which ∇u jumps across a smooth surface Γ ⊂ Ω, then the
jump in ∇u across Γ must be zero. In § 3 we show that the corresponding result is
false for weak solutions of (1.8); we give an example of a piecewise C1 weak solution
of the energy–momentum equations which is not C2 across a smooth surface. We
do this using an example of degenerate cavitation studied in [25] and show that
the discontinuous minimizer obtained in [25] is a weak solution of the energy–
momentum equations which, apart from being discontinuous at the origin of B, is
piecewise C1 but not C2 on B\{0}. This should be contrasted with the results of [5]
which show that, for a class of polyconvex stored-energy functions, any C1,β weak
solution of the energy–momentum equations is automatically a smooth solution of
the Euler–Lagrange equations.

The results of this paper should also be taken in conjunction with known regu-
larity results1 (see, for example, [7, 9, 12–14, 18]) for the system (1.4), which show

1These results are obtained for a class of integrands which are incompatible with (1.11).
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that if W is uniformly quasiconvex, then minimizers of (1.1) are C1,α off a closed
set of n-dimensional measure 0. See also the interesting results of [21] and also [30]
which give a W 1,∞ weak solution of (1.4) that is nowhere C1. In the context of
nonlinear elasticity, it is known that energy minimizers may develop discontinuities
corresponding to cavitation (see, for example, [2, 15, 20, 24, 27]). These cavitation
solutions are weak solutions of system (1.8) (see, for example, [2, 28]). In [28], the
present authors give an explicit construction of infinitely many singular weak solu-
tions for systems (1.4) and (1.8) using radial cavitation solutions as building blocks.
In [16], Knops and Stuart prove the uniqueness result (under the assumption of
strict quasiconvexity) that the only C2 solutions of (1.4) satisfying homogeneous
boundary conditions are the homogeneous maps (see also [25] for an alternative
proof). Taheri [31] shows that the same conclusion holds for C1 weak solutions of
(1.8). See also the examples [10,11] of singular minimizers (exhibiting the Lavrentiev
phenomenon) for two-dimensional problems of elasticity.

2. x/|x| satisfies the energy–momentum equations

In this section we show that the mapping

ũ(x) :=
x

|x|

is a weak solution of the energy–momentum equations whenever ũ has finite energy.
We start by gathering some basic results. The first is well known to workers in non-
linear elasticity (see, for example, [8]), while the second can be found, for example,
in [2].

Lemma 2.1. Let W be frame indifferent and isotropic. Then there exists a symmet-
ric function Φ such that

W (F ) = Φ(ν1, ν2, . . . , νn), (2.1)

where ν1, ν2, . . . , νn are the eigenvalues of
√

F TF , which are known in elasticity
terminology as the principal stretches.

Lemma 2.2. Let 1 � p < n. Then ũ ∈ W 1,p(B; Rn) with weak derivative

∇ũ(x) =
1

|x|

(
I − x ⊗ x

|x|2

)
. (2.2)

Moreover, for x �= 0 the principal stretches of ũ are given by

ν1 = 0, ν2 =
1

|x| , ν3 =
1

|x| , . . . , νn =
1

|x| . (2.3)

Lemma 2.3. For x �= 0,

div
(

dW
dF

(∇ũ)
)

=
(

d
dR

Φ,1 +
n − 1

R
[Φ,1 −Φ,2 ]

)
x

|x| ,

where Φ,i denotes the partial derivative of Φ with respect to νi and evaluated at (2.3).
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Proof. First note that

∂W

∂F i
α

(∇ũ) = Φ,1
xixα

R2 + Φ,2

[
δi
α − xixα

R2

]
. (2.4)

From this, an easy calculation yields

∂

∂xα

(
∂W

∂F i
α

(∇ũ)
)

=
(

d
dR

Φ,1 +
n − 1

R
[Φ,1 −Φ,2 ]

)
xi

R
, (2.5)

where the arguments of Φ and its derivatives are given by (2.3).

Lemma 2.4. Suppose that M(∇ũ) ∈ L1(B; Mn×n) and that

lim
ε→0

εnΦ

(
0,

1
ε
,
1
ε
, . . . ,

1
ε

)
= 0. (2.6)

Then ũ is a weak solution of the energy–momentum equations (i.e. it satisfies
(1.13)).

Proof. First note that, by (1.10), (2.2) and lemma 2.3,

div M(∇ũ) = 0 in B \ Bε.

Thus, for any w ∈ C1
0 (B; Rn), we have∫

B\Bε

∇w : M(∇ũ) dx =
∫

B\Bε

div(M(∇ũ)w) dx

=
∫

∂Bε

w · M(∇ũ)n dS

= Φ

(
0,

1
ε
, . . . ,

1
ε

) ∫
∂Bε

w · n dS

= Φ

(
0,

1
ε
, . . . ,

1
ε

) ∫
Bε

div w dx, (2.7)

where we have made use of (1.9) and (2.1)–(2.4) in obtaining the penultimate equal-
ity. The desired result then follows from (2.6), (2.7) and the dominated convergence
theorem applied to a sequence εj → 0.

Theorem 2.5. Let the stored-energy function W be isotropic and frame indifferent.
Suppose that the symmetric function Φ given in lemma 2.1 satisfies (2.6). Assume
either that W satisfies∣∣∣∣AT dW

dF
(A)

∣∣∣∣ � K[1 + W (A)], W (A) � K[1 + |A|p] + h(det A) (2.8)

for all A ∈ Mn×n with det A � 0 or, equivalently, that Φ satisfies

|z · ∇zΦ(z)| � K[1 + Φ(z)], Φ(z) � K[1 + |z|p] + h

( n∏
i=1

zi

)
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for all z ∈ R
n with zi � 0, i = 1, 2, . . . , n. Here h ∈ C([0,∞); [0,∞)), K > 0 and

1 � p < n. Then ũ is a weak solution of the energy–momentum equations.

Remark 2.6. Condition (2.8)1 has been used in [3, 4] to show that, for stored-
energy functions that satisfy (1.11), every energy minimizer must satisfy the energy–
momentum equations. In [4] Ball also shows that (2.8)1 implies that

W (A) � K(|A|s + |A−1|s)

for some s > 0 and K > 0.

Proof of theorem 2.5. We first note that (2.8)2 and the hypothesis that h(0) is
finite imply that ũ has finite energy. Hypothesis (2.8)1 then yields M(∇ũ) ∈
L1(B; Mn×n). The desired result now follows from the previous lemma.

Example 2.7. In particular, if µ > 0, 1 � p < n and h ∈ C([0,∞); [0,∞)) ∩
C2((0,∞)) satisfies th′(t) � C[1 + h(t)] for all t ∈ [0,∞), then the Ogden [22, 23]
materials

Φ(λ1, λ2, . . . , λn) =
µ

p

n∑
i=1

λp
i + h

( n∏
i=1

λi

)

satisfy the hypotheses of the previous theorem. Moreover, if h′(1) + µ = 0, then
the reference configuration, F = I, is stress free and if, in addition, t �→ h(tn) is
convex, then uh(x) ≡ x is the unique global minimizer of the energy that satisfies
the boundary condition (1.3). Moreover, if h′(t) → −∞ as t → 0 then, although
it does not require infinite energy to compress the material to zero volume, such
compressions will generate infinite stresses.

Corollary 2.8. Let Ω ⊂ R
n be a bounded domain. Suppose that the stored-energy

function W satisfies the hypotheses of theorem 2.5. Then, as a consequence of theo-
rem 2.5, one can construct infinitely many weak solutions of the energy–momentum
equations that satisfy (1.3). Each solution in the construction has a countable num-
ber of singularities and is contained in W 1,p(Ω) for all 1 � p < n, but is not
contained in W 1,n(Ω) or C(Ω).

Proof. Let Ω ≈
⋃∞

i=1 B̄(xi, δi) up to a set of n-dimensional Lebesgue measure zero,
where B̄(xi, δi) ⊂ Ω are pairwise-disjoint, closed balls of radius δi > 0 centred at
xi. (Many such decompositions can be obtained by the Vitali covering theorem.)
Then, as shown in [28],

û(x) :=

⎧⎨
⎩

δi
x − xi

|x − xi|
+ xi if x ∈ B̄(xi, δi),

x otherwise

has the required properties.

Remark 2.9. Straightforward examples show that, in general, ũ is not a solution
of the Euler–Lagrange equations (1.4). For example, take W (F ) = |F |2. Then

Φ =
n∑

i=1

(νi)2
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and an easy calculation shows that (2.5) takes the form

∂

∂xα

(
∂W

∂F i
α

(∇ũ)
)

=
(

n − 1
R

[−Φ,2 ]
)

xi

R
= −2(n − 1)

xi

R3 �= 0.

Remark 2.10. It is interesting to note the connection between the Lagrange mul-
tiplier equations and the energy–momentum equations (1.8). Consider the con-
strained variational problem in which we minimize the energy (1.1) subject to the
pointwise constraint G(u) = 0 almost everywhere. (For example, in some studies
of liquid crystals (see, for example, [6, 19]),

E(u) =
∫

B

|∇u|2

and the vector fields u are constrained to be unit vectors so that G(u) = |u|2 −
1 = 0 almost everywhere.) The Lagrange multiplier equations for this problem are
formally given by

div
(

dW

dF
(∇u)

)
+ λ(x)∇uG(u) = 0, G(u) = 0, (2.9)

where λ(x) is a Lagrange multiplier corresponding to the constraint. Note that, in
this case, on differentiating the constraint, we obtain

(∇u)T∇uG(u) = 0, (2.10)

and hence, on multiplying (2.9)1 by (∇u)T, we obtain

(∇u)T div
(

dW

dF
(∇u)

)
= 0.

Thus, by (1.10), it follows that any (smooth) solution of the Lagrange multiplier
equations is also a solution of the energy–momentum equations. This connection
between solutions is also apparent from the fact that the inner variations (1.7) which
are used to derive the energy–momentum equations also preserve the constraint
G(u) = 0 almost everywhere.

Conversely, if u is a smooth solution of the energy–momentum equations which
also satisfies the constraint G(u) = 0 and if ∇uG(u) �= 0 and ∇u has rank n − 1,
then a similar argument shows that there exists a λ(x) such that the Lagrange
multiplier equations hold. Of course, if any of these assumptions do not hold, then
the reverse implication fails. (Note in particular that, for the liquid crystal problem
mentioned above, these assumptions do hold.)

3. C1 solutions of the energy–momentum equations need not be C2

In this section we show that a continuously differentiable weak solution of the
energy–momentum equations need not be C2.
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Let B ⊂ R
3 denote the unit ball in R

3. A study of degenerate cavitation [25]
considers the model problem of minimizing a functional of the form2

E(u) =
∫

B

[ 12 |∇u|2 + 4
3κ det ∇u] dx (3.1)

on the admissible set of deformations

A = {u ∈ W 1,2(B; Rn) : det∇u � 0 a.e., u(x) = x for all x ∈ ∂B},

where κ � 0 is a scalar. In the class of radial deformations of the form

u(x) = r(R)
x

R
, R = |x|, (3.2)

it follows from theorem 1.3 of [25] that

(i) if κ ∈ [0, 1], then r(R) ≡ R is the radial minimizer,

(ii) if κ ∈ (1, 3
2 ), then the radial minimizer is given by

r(R) =

⎧⎨
⎩

κ−1R +
κ − 1
κR2 if R ∈ [R0, 1],

3
2κ−1R0 if R ∈ [0, R0],

where
R0 = [2(κ − 1)]1/3,

(iii) if κ � 3
2 , then r(R) ≡ 1 is the radial minimizer.

Therefore, for κ > 1, the above maps produce a hole at the centre of the deformed
ball. (Note that these deformations are degenerate in the sense that det∇u = 0 on
a set of non-zero measure.)

Formally, the Euler–Lagrange equations for (3.1) are given by ∆u = 0 since
det ∇u is a null Lagrangian. However, these equations are not satisfied throughout
B by the above radial minimizers; in particular, they do not hold on BR0 (in
case (ii)) and on B (in case (iii)), where BR0 denotes the open ball of radius R0
centred at the origin. Despite this, we demonstrate next that these radial minimizers
do satisfy the weak form of the energy–momentum equations on B. We consider
case (ii) only (as case (iii) has already been discussed).

An easy calculation shows that, for the stored-energy function in (3.1), the cor-
responding energy–momentum tensor is given by

M(∇u) = |∇u|2I − 2(∇u)T∇u. (3.3)

We next observe that the radial maps given in (ii) are C1 on B̄ \ {0} and are C2 in
each of B \ BR0 and BR0 \ {0}. To prove our claim we will first demonstrate that
the energy–momentum equations (1.8) hold in each of B \ BR0 and BR0 \ {0}. To
see this, observe that, by (1.10), for C2 maps, these equations are given by

div M(∇u) = −2(∇u)T∆u = 0. (3.4)
2Results on degenerate cavitation in the radial case for more general energy functions are

contained in [26].
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Now note that, in case (ii), the radial map satisfies ∆u = 0 on B \ B̄R0 , and
hence the above equations hold in this region. Next observe that in BR0 , the radial
minimizer is of the form

u = c
x

|x| ,

where c is a constant. Thus, by lemma 2.2,

∇u =
c

|x|

[
I − x ⊗ x

|x|2

]
, (3.5)

and an easy calculation yields

∆u = −2c
x

|x|3

and so (3.4) also holds in BR0 \ {0}. Thus, for v ∈ C1
0 (B; R3),∫

B

∇v : M dx =
∫

B\BR0

div(Mv) dx + lim
ε→0

∫
BR0\Bε

div(Mv) dx

= lim
ε→0

∫
∂Bε

v · Mn dS,

where we have used (1.8), the divergence theorem and the fact that u is C1 across
∂BR0 . Next, using (3.3) and (3.5), it follows that the above expression is equal to

lim
ε→0

∫
∂Bε

v ·
(

− c2

|x|2

)
n dS = −c2 lim

ε→0

(
1
ε2

∫
∂Bε

v · n dS

)

= −c2 lim
ε→0

(
1
ε2

∫
Bε

div v dx

)

= 0,

and hence the radial minimizers given by (3.2) and (ii) satisfy the weak form of
the energy–momentum equations. Note, however, that this radial solution is not C2

across ∂BR0 since r′′(R) is discontinuous at R = R0.

Remark 3.1. In the general radial-cavitation problem studied in [2], the energy
functional (1.1) is minimized in a class of deformations of the unit ball B of the
form

u(x) =
r(R)
R

x, R = |x|,

and it is shown that there exist minimizers satisfying r(0) > 0 corresponding to a
cavity forming at the centre of the deformed ball (see [15,20,27] for generalizations
to non-symmetric problems). It is interesting to note that in these problems,

∇u(x) = r′(R)
x ⊗ x

R2 +
r(R)
R

(
I − x ⊗ x

R2

)

and (by calculations analogous to those in lemma 2.3)

div
(

dW

dF
(∇u)

)
= f(R)

x

|x| .



202 J. Sivaloganathan and S. J. Spector

There may be situations in which f(R) �= 0 at some points but with r′(R) = 0
at these points. This would then generate a solution of the energy–momentum
equations (1.8), (1.9) which is not a solution of the equilibrium equations (1.4).
(Note also that the radial cavitation equilibria studied in [2] satisfy r′(R) → 0 as
R → 0 and that f(0) is typically undefined.)

Remark 3.2. The example of degenerate cavitation has been extended in [32] to
the case of integral functionals of the form:

E(u) =
∫

B

[|∇u|p + α det ∇u] dx,

where p ∈ [2, 3), α > 0 and B is the unit ball centred at the origin in R
3. In this case

it is shown in [32] that an exactly analogous phenomenon of degenerate cavitation
occurs.
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